Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Eur J Hum Genet ; 32(3): 324-332, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282074

RESUMO

Pathogenic variants in KANSL1 and 17q21.31 microdeletions are causative of Koolen-de Vries syndrome (KdVS), a neurodevelopmental syndrome with characteristic facial dysmorphia. Our previous work has shown that syndromic conditions caused by pathogenic variants in epigenetic regulatory genes have identifiable patterns of DNA methylation (DNAm) change: DNAm signatures or episignatures. Given the role of KANSL1 in histone acetylation, we tested whether variants underlying KdVS are associated with a DNAm signature. We profiled whole-blood DNAm for 13 individuals with KANSL1 variants, four individuals with 17q21.31 microdeletions, and 21 typically developing individuals, using Illumina's Infinium EPIC array. In this study, we identified a robust DNAm signature of 456 significant CpG sites in 8 individuals with KdVS, a pattern independently validated in an additional 7 individuals with KdVS. We also demonstrate the diagnostic utility of the signature and classify two KANSL1 VUS as well as four variants in individuals with atypical clinical presentation. Lastly, we investigated tissue-specific DNAm changes in fibroblast cells from individuals with KdVS. Collectively, our findings contribute to the understanding of the epigenetic landscape related to KdVS and aid in the diagnosis and classification of variants in this structurally complex genomic region.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Deficiência Intelectual , Humanos , Anormalidades Múltiplas/genética , Cromossomos Humanos Par 17 , Metilação de DNA , Genes Reguladores , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico
3.
Nat Commun ; 14(1): 6332, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816716

RESUMO

Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Reposicionamento de Medicamentos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Combinação de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762133

RESUMO

The use of 90 kDa heat shock protein (HSP90) inhibition as a therapy in lung adenocarcinoma remains limited due to moderate drug efficacy, the emergence of drug resistance, and early tumor recurrence. The main objective of this research is to maximize treatment efficacy in lung adenocarcinoma by identifying key proteins underlying HSP90 inhibition according to molecular background, and to search for potential biomarkers of response to this therapeutic strategy. Inhibition of the HSP90 chaperone was evaluated in different lung adenocarcinoma cell lines representing the most relevant molecular alterations (EGFR mutations, KRAS mutations, or EML4-ALK translocation) and wild-type genes found in each tumor subtype. The proteomic technique iTRAQ was used to identify proteomic profiles and determine which biological pathways are involved in the response to HSP90 inhibition in lung adenocarcinoma. We corroborated the greater efficacy of HSP90 inhibition in EGFR mutated or EML4-ALK translocated cell lines. We identified proteins specifically and significantly deregulated after HSP90 inhibition for each molecular alteration. Two proteins, ADI1 and RRP1, showed independently deregulated molecular patterns. Functional annotation of the altered proteins suggested that apoptosis was the only pathway affected by HSP90 inhibition across all molecular subgroups. The expression of ADI1 and RRP1 could be used to monitor the correct inhibition of HSP90 in lung adenocarcinoma. In addition, proteins such as ASS1, ITCH, or UBE2L3 involved in pathways related to the inhibition of a particular molecular background could be used as potential response biomarkers, thereby improving the efficacy of this therapeutic approach to combat lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Proteômica , Receptores ErbB/genética , Receptores ErbB/metabolismo , Recidiva Local de Neoplasia/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Receptores Proteína Tirosina Quinases/genética , Oncogenes , Mutação , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo
5.
Chem Sci ; 14(4): 869-888, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755705

RESUMO

Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct ß-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new "bilobal" or the classic "standard" mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system.

6.
J Thorac Oncol ; 17(12): 1387-1403, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35988891

RESUMO

INTRODUCTION: SCLC is an extremely aggressive subtype of lung cancer without approved targeted therapies. Here we identified YES1 as a novel targetable oncogene driving SCLC maintenance and metastasis. METHODS: Association between YES1 levels and prognosis was evaluated in SCLC clinical samples. In vitro functional experiments for proliferation, apoptosis, cell cycle, and cytotoxicity were performed. Genetic and pharmacologic inhibition of YES1 was evaluated in vivo in cell- and patient-derived xenografts and metastasis. YES1 levels were evaluated in mouse and patient plasma-derived exosomes. RESULTS: Overexpression or gain/amplification of YES1 was identified in 31% and 26% of cases, respectively, across molecular subgroups, and was found as an independent predictor of poor prognosis. Genetic depletion of YES1 dramatically reduced cell proliferation, three-dimensional organoid formation, tumor growth, and distant metastasis, leading to extensive apoptosis and tumor regressions. Mechanistically, YES1-inhibited cells revealed alterations in the replisome and DNA repair processes, that conferred sensitivity to irradiation. Pharmacologic blockade with the novel YES1 inhibitor CH6953755 or dasatinib induced marked antitumor activity in organoid models and cell- and patient-derived xenografts. YES1 protein was detected in plasma exosomes from patients and mouse models, with levels matching those of tumors, suggesting that circulating YES1 could represent a biomarker for patient selection/monitoring. CONCLUSIONS: Our results provide evidence that YES1 is a new druggable oncogenic target and biomarker to advance the clinical management of a subpopulation of patients with SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Oncogenes , Proliferação de Células/genética , Apoptose , Carcinogênese/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Proteínas Proto-Oncogênicas c-yes/genética
7.
Nanoscale ; 14(22): 8028-8040, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35616261

RESUMO

Nonyl acridine orange (NAO) is a lipophilic and positively charged molecule widely used as a mitochondrial fluorescent probe. NAO is cytotoxic at micromolar concentration and might be potentially used as a mitochondria-targeted drug for cancer therapy. However, the use of NAO under in vivo conditions would be compromised by the unspecific interactions with off-target cells and negatively charged proteins present in the bloodstream. To tackle this limitation, we have synthesized NAO analogues carrying an imidazole group for their specific binding to nitrilotriacetic (NTA) functionalized gold nanorods (AuNRs). We demonstrate that AuNRs provide 104 binding sites and a controlled delivery under acidic conditions. Upon incubation with mouse embryonic fibroblasts, the endosomal acidic environment releases the NAO analogues from AuNRs, as visualized through the staining of the mitochondrial network. The addition of the monoclonal antibody Cetuximab to the conjugates enhanced their uptake within lung cancer cells and the conjugates were cytotoxic at subnanomolar concentrations (c50 ≈ 0.06 nM). Moreover, the specific interactions of Cetuximab with the epidermal growth factor receptor (EGFR) provided a specific targeting of EGFR-expressing lung cancer cells. After intravenous administration in patient-derived xenografts (PDX) mouse models, the conjugates reduced the progression of EGFR-positive tumors. Overall, the NAO-AuNRs provide a promising strategy to realize membrane mitochondria-targeted conjugates for lung cancer therapy.


Assuntos
Neoplasias Pulmonares , Nanotubos , Laranja de Acridina/química , Laranja de Acridina/metabolismo , Aminoacridinas , Animais , Cetuximab/metabolismo , Cetuximab/farmacologia , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Ouro/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Mitocôndrias/metabolismo
8.
Nat Med ; 28(4): 752-765, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411077

RESUMO

Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/secundário , Irradiação Craniana , Humanos , Melanoma/radioterapia
9.
J Clin Med ; 11(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35329826

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide, with non-small cell lung cancer (NSCLC) being the most prevalent histology. While immunotherapy with checkpoint inhibitors has shown outstanding results in NSCLC, the precise identification of responders remains a major challenge. Most studies attempting to overcome this handicap have focused on adenocarcinomas or squamous cell carcinomas. Among NSCLC subtypes, the molecular and immune characteristics of lung large cell carcinoma (LCC), which represents 10% of NSCLC cases, are not well defined. We hypothesized that specific molecular aberrations may impact the immune microenvironment in LCC and, consequently, the response to immunotherapy. To that end, it is particularly relevant to thoroughly describe the molecular genotype-immunophenotype association in LCC-to identify robust predictive biomarkers and improve potential benefits from immunotherapy. We established a cohort of 18 early-stage, clinically annotated, LCC cases. Their molecular and immune features were comprehensively characterized by genomic and immune-targeted sequencing panels along with immunohistochemistry of immune cell populations. Unbiased clustering defined two novel subgroups of LCC. Pro-immunogenic tumors accumulated certain molecular alterations, showed higher immune infiltration and upregulated genes involved in potentiating immune responses when compared to pro-tumorigenic samples, which favored tumoral progression. This classification identified a set of biomarkers that could potentially predict response to immunotherapy. These results could improve patient selection and expand potential benefits from immunotherapy.

10.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33963008

RESUMO

BACKGROUND: Tumor mutational burden (TMB) is a recently proposed predictive biomarker for immunotherapy in solid tumors, including non-small cell lung cancer (NSCLC). Available assays for TMB determination differ in horizontal coverage, gene content and algorithms, leading to discrepancies in results, impacting patient selection. A harmonization study of TMB assessment with available assays in a cohort of patients with NSCLC is urgently needed. METHODS: We evaluated the TMB assessment obtained with two marketed next generation sequencing panels: TruSight Oncology 500 (TSO500) and Oncomine Tumor Mutation Load (OTML) versus a reference assay (Foundation One, FO) in 96 NSCLC samples. Additionally, we studied the level of agreement among the three methods with respect to PD-L1 expression in tumors, checked the level of different immune infiltrates versus TMB, and performed an inter-laboratory reproducibility study. Finally, adjusted cut-off values were determined. RESULTS: Both panels showed strong agreement with FO, with concordance correlation coefficients (CCC) of 0.933 (95% CI 0.908 to 0.959) for TSO500 and 0.881 (95% CI 0.840 to 0.922) for OTML. The corresponding CCCs were 0.951 (TSO500-FO) and 0.919 (OTML-FO) in tumors with <1% of cells expressing PD-L1 (PD-L1<1%; N=55), and 0.861 (TSO500-FO) and 0.722 (OTML-FO) in tumors with PD-L1≥1% (N=41). Inter-laboratory reproducibility analyses showed higher reproducibility with TSO500. No significant differences were found in terms of immune infiltration versus TMB. Adjusted cut-off values corresponding to 10 muts/Mb with FO needed to be lowered to 7.847 muts/Mb (TSO500) and 8.380 muts/Mb (OTML) to ensure a sensitivity >88%. With these cut-offs, the positive predictive value was 78.57% (95% CI 67.82 to 89.32) and the negative predictive value was 87.50% (95% CI 77.25 to 97.75) for TSO500, while for OTML they were 73.33% (95% CI 62.14 to 84.52) and 86.11% (95% CI 74.81 to 97.41), respectively. CONCLUSIONS: Both panels exhibited robust analytical performances for TMB assessment, with stronger concordances in patients with negative PD-L1 expression. TSO500 showed a higher inter-laboratory reproducibility. The cut-offs for each assay were lowered to optimal overlap with FO.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/genética , Mutação , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Variações Dependentes do Observador , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes
11.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802597

RESUMO

Heat shock protein 90 (HSP90) plays an essential role in lung adenocarcinoma, acting as a key chaperone involved in the correct functioning of numerous highly relevant protein drivers of this disease. To this end, HSP90 inhibitors have emerged as promising therapeutic strategies, even though responses to them have been limited to date. Given the need to maximize treatment efficacy, the objective of this study was to use isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic techniques to identify proteins in human lung adenocarcinoma cell lines whose basal abundances were correlated with response to HSP90 inhibitors (geldanamycin and radicicol derivatives). From the protein profiles identified according to response, the relationship between lactate dehydrogenase B (LDHB) and DNA topoisomerase 1 (TOP1) with respect to sensitivity and resistance, respectively, to geldanamycin derivatives is noteworthy. Likewise, rhotekin (RTKN) and decaprenyl diphosphate synthase subunit 2 (PDSS2) were correlated with sensitivity and resistance to radicicol derivatives. We also identified a relationship between resistance to HSP90 inhibition and the p53 pathway by glucose deprivation. In contrast, arginine biosynthesis was correlated with sensitivity to HSP90 inhibitors. Further study of these outcomes could enable the development of strategies to improve the clinical efficacy of HSP90 inhibition in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Humanos , Lactamas Macrocíclicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Chaperonas Moleculares/metabolismo , Proteômica/métodos
12.
Clin Cancer Res ; 27(11): 3167-3177, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785484

RESUMO

PURPOSE: The induction of 4-1BB signaling by agonistic antibodies can drive the activation and proliferation of effector T cells and thereby enhance a T-cell-mediated antitumor response. Systemic administration of anti-4-1BB-agonistic IgGs, although effective preclinically, has not advanced in clinical development due to their severe hepatotoxicity. EXPERIMENTAL DESIGN: Here, we generated a humanized EGFR-specific 4-1BB-agonistic trimerbody, which replaces the IgG Fc region with a human collagen homotrimerization domain. It was characterized by structural analysis and in vitro functional studies. We also assessed pharmacokinetics, antitumor efficacy, and toxicity in vivo. RESULTS: In the presence of a T-cell receptor signal, the trimerbody provided potent T-cell costimulation that was strictly dependent on 4-1BB hyperclustering at the point of contact with a tumor antigen-displaying cell surface. It exhibits significant antitumor activity in vivo, without hepatotoxicity, in a wide range of human tumors including colorectal and breast cancer cell-derived xenografts, and non-small cell lung cancer patient-derived xenografts associated with increased tumor-infiltrating CD8+ T cells. The combination of the trimerbody with a PD-L1 blocker led to increased IFNγ secretion in vitro and resulted in tumor regression in humanized mice bearing aggressive triple-negative breast cancer. CONCLUSIONS: These results demonstrate the nontoxic broad antitumor activity of humanized Fc-free tumor-specific 4-1BB-agonistic trimerbodies and their synergy with checkpoint blockers, which may provide a way to elicit responses in most patients with cancer while avoiding Fc-mediated adverse reactions.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Receptores ErbB , Imunoterapia/métodos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/uso terapêutico , Animais , Neoplasias da Mama/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Neoplasias Pulmonares/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/fisiologia , Camundongos Transgênicos , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
13.
Cancers (Basel) ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847130

RESUMO

Although two growth factor receptors, EGFR and HER2, are amongst the best targets for cancer treatment, no agents targeting HER3, their kinase-defective family member, have so far been approved. Because emergence of resistance of lung tumors to EGFR kinase inhibitors (EGFRi) associates with compensatory up-regulation of HER3 and several secreted forms, we anticipated that blocking HER3 would prevent resistance. As demonstrated herein, a neutralizing anti-HER3 antibody we generated can clear HER3 from the cell surface, as well as reduce HER3 cleavage by ADAM10, a surface metalloproteinase. When combined with a kinase inhibitor and an anti-EGFR antibody, the antibody completely blocked patient-derived xenograft models that acquired resistance to EGFRi. We found that the underlying mechanism involves posttranslational downregulation of HER3, suppression of MET and AXL upregulation, as well as concomitant inhibition of AKT signaling and upregulation of BIM, which mediates apoptosis. Thus, although HER3 is nearly devoid of kinase activity, it can still serve as an effective drug target in the context of acquired resistance. Because this study simulated in animals the situation of patients who develop resistance to EGFRi and remain with no obvious treatment options, the observations presented herein may warrant clinical testing.

14.
EBioMedicine ; 53: 102683, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32114392

RESUMO

BACKGROUND: Fibroblast growth factor receptor (FGFR)1 and FGFR4 have been associated with tumorigenesis in a variety of tumour types. As a therapeutic approach, their inhibition has been attempted in different types of malignancies, including lung cancer, and was initially focused on FGFR1-amplified tumours, though with limited success. METHODS: In vitro and in vivo functional assessments of the oncogenic potential of downregulated/overexpressed genes in isogenic cell lines were performed, as well as inhibitor efficacy tests in vitro and in vivo in patient-derived xenografts (PDXs). mRNA was extracted from FFPE non-small cell lung cancer samples to determine the prognostic potential of the genes under study. FINDINGS: We provide in vitro and in vivo evidence showing that expression of the adhesion molecule N-cadherin is key for the oncogenic role of FGFR1/4 in non-small cell lung cancer. According to this, assessment of the expression of genes in different lung cancer patient cohorts showed that FGFR1 or FGFR4 expression alone showed no prognostic potential, and that only co-expression of FGFR1 and/or FGFR4 with N-cadherin inferred a poorer outcome. Treatment of high-FGFR1 and/or FGFR4-expressing lung cancer cell lines and patient-derived xenografts with selective FGFR inhibitors showed high efficacy, but only in models with high FGFR1/4 and N-cadherin expression. INTERPRETATION: Our data show that the determination of the expression of FGFR1 or FGFR4 alone is not sufficient to predict anti-FGFR therapy efficacy; complementary determination of N-cadherin expression may further optimise patient selection for this therapeutic strategy.


Assuntos
Biomarcadores Tumorais/genética , Caderinas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Animais , Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Piperazinas/uso terapêutico , Pirazóis/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Células Tumorais Cultivadas
15.
Clin Lung Cancer ; 21(1): 75-85, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562055

RESUMO

BACKGROUND: Immunotherapy is a promising cancer treatment, but surrogate biomarkers of clinical efficacy have not been fully validated. The aim of this work was to evaluate several biomarkers as predictors of response to nivolumab monotherapy in patients with non-small-cell lung cancer. PATIENTS AND METHODS: Blood samples was collected at baseline, at 2 months after treatment start, and at disease progression. Lactate dehydrogenase level (LDH), neutrophils, and leukocyte values were obtained from medical record. Interleukin (IL)-8, IL-11, and kynurenine/tryptophan levels were determined by enzyme-linked immunosorbent assay. Total protein was extracted from circulating CD8+ T cells, and BCL-2 interacting mediator of cell death (BIM) protein expression tested by western blotting. RESULTS: Baseline LDH levels were significantly higher in non-responder patients than in those who responded (P = .045). The increase in indoleamine 2,3 dioxygenase activity was related to progression of disease, mainly in patients who did not respond to nivolumab treatment (P = .001). Increased levels of circulating IL-8 were observed in initially responding patients at time of progression, and it was related to lower overall survival (hazard ratio, 7.49; P = .025). A highest expression of BIM in circulating CD8+ T cells could be related to clinical benefit. The Student t test and Mann-Whitney U test were used to compare groups for continuous variables. Time to events was estimated using the Kaplan-Meier method, and compared by the log-rank test. CONCLUSIONS: Changes in plasma LDH and IL-8, indoleamine 2,3 dioxygenase activity, and BIM expression in CD8+ T cells could be used to monitor and predict clinical benefit from nivolumab treatment in these patients.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Imunoterapia/métodos , Neoplasias Pulmonares/patologia , Nivolumabe/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína 11 Semelhante a Bcl-2/sangue , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Feminino , Humanos , Hidroliases/sangue , Indolamina-Pirrol 2,3,-Dioxigenase/sangue , Interleucina-8/metabolismo , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida , Resultado do Tratamento
16.
J Clin Invest ; 130(2): 612-624, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31671073

RESUMO

EGFR-mutated lung adenocarcinoma patients treated with gefitinib and osimertinib show a therapeutic benefit limited by the appearance of secondary mutations, such as EGFRT790M and EGFRC797S. It is generally assumed that these secondary mutations render EGFR completely unresponsive to the inhibitors, but contrary to this, we uncovered here that gefitinib and osimertinib increased STAT3 phosphorylation (p-STAT3) in EGFRT790M and EGFRC797S tumoral cells. Interestingly, we also found that concomitant Notch inhibition with gefitinib or osimertinib treatment induced a p-STAT3-dependent strong reduction in the levels of the transcriptional repressor HES1. Importantly, we showed that tyrosine kinase inhibitor-resistant tumors, with EGFRT790M and EGFRC797S mutations, were highly responsive to the combined treatment of Notch inhibitors with gefitinib or osimertinib, respectively. Finally, in patients with EGFR mutations treated with tyrosine kinase inhibitors, HES1 protein levels increased during relapse and correlated with shorter progression-free survival. Therefore, our results offer a proof of concept for an alternative treatment to chemotherapy in lung adenocarcinoma osimertinib-treated patients after disease progression.


Assuntos
Acrilamidas/farmacologia , Adenocarcinoma de Pulmão , Compostos de Anilina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB , Gefitinibe/farmacologia , Neoplasias Pulmonares , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Substituição de Aminoácidos , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
17.
Nat Med ; 25(11): 1783-1795, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31700175

RESUMO

Proinflammatory cytokines in the tumor microenvironment can promote tumor growth, yet their value as therapeutic targets remains underexploited. We validated the functional significance of the cardiotrophin-like cytokine factor 1 (CLCF1)-ciliary neurotrophic factor receptor (CNTFR) signaling axis in lung adenocarcinoma (LUAD) and generated a high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1, thereby inhibiting its oncogenic effects. eCNTFR-Fc inhibits tumor growth in multiple xenograft models and in an autochthonous, highly aggressive genetically engineered mouse model of LUAD, driven by activation of oncogenic Kras and loss of Trp53. Abrogation of CLCF1 through eCNTFR-Fc appears most effective in tumors driven by oncogenic KRAS. We observed a correlation between the effectiveness of eCNTFR-Fc and the presence of KRAS mutations that retain the intrinsic capacity to hydrolyze guanosine triphosphate, suggesting that the mechanism of action may be related to altered guanosine triphosphate loading. Overall, we nominate blockade of CLCF1-CNTFR signaling as a novel therapeutic opportunity for LUAD and potentially for other tumor types in which CLCF1 is present in the tumor microenvironment.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Proliferação de Células/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Citocinas/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/química , Citocinas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucinas/genética , Camundongos , Mutação/genética , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cells ; 8(8)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370342

RESUMO

Heat shock protein 90 (HSP90) is an important chaperone in lung adenocarcinoma, with relevant protein drivers such as EGFR (epidermal growth factor receptor) and EML4-ALK (echinoderm microtubule-associated protein-like protein4 fused to anaplastic lymphoma kinase) depending on it for their correct function, therefore HSP90 inhibitors show promise as potential treatments for lung adenocarcinoma. To study responses to its inhibition, HSP90 was pharmacologically interrupted by geldanamycin and resorcinol derivatives or with combined inhibition of HSP90 plus HSP70 in lung adenocarcinoma cell lines. Two-dimensional electrophoresis was performed to identify proteomic profiles associated with inhibition which will help to understand the biological basis for the responses. HSP90 inhibition resulted in altered protein profiles that differed according the treatment condition studied. Results revealed 254 differentially expressed proteins after treatments, among which, eukaryotic translation initiation factor3 subunit I (eIF3i) and citrate synthase demonstrated their potential role as response biomarkers. The differentially expressed proteins also enabled signalling pathways involved in responses to be identified; these included apoptosis, serine-glycine biosynthesis and tricarboxylic acid cycle. The proteomic profiles identified here contribute to an improved understanding of HSP90 inhibition and open possibilities for the detection of potential response biomarkers which will be essential to maximize treatment efficacy in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Proteômica/métodos , Células A549 , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Regulação Neoplásica da Expressão Gênica , Humanos , Lactamas Macrocíclicas/farmacologia , Espectrometria de Massas , Mapas de Interação de Proteínas , Resorcinóis/farmacologia
19.
Am J Respir Crit Care Med ; 200(7): 888-899, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166114

RESUMO

Rationale: The characterization of new genetic alterations is essential to assign effective personalized therapies in non-small cell lung cancer (NSCLC). Furthermore, finding stratification biomarkers is essential for successful personalized therapies. Molecular alterations of YES1, a member of the SRC (proto-oncogene tyrosine-protein kinase Src) family kinases (SFKs), can be found in a significant subset of patients with lung cancer.Objectives: To evaluate YES1 (v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1) genetic alteration as a therapeutic target and predictive biomarker of response to dasatinib in NSCLC.Methods: Functional significance was evaluated by in vivo models of NSCLC and metastasis and patient-derived xenografts. The efficacy of pharmacological and genetic (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 [CRISPR-associated protein 9]) YES1 abrogation was also evaluated. In vitro functional assays for signaling, survival, and invasion were also performed. The association between YES1 alterations and prognosis was evaluated in clinical samples.Measurements and Main Results: We demonstrated that YES1 is essential for NSCLC carcinogenesis. Furthermore, YES1 overexpression induced metastatic spread in preclinical in vivo models. YES1 genetic depletion by CRISPR/Cas9 technology significantly reduced tumor growth and metastasis. YES1 effects were mainly driven by mTOR (mammalian target of rapamycin) signaling. Interestingly, cell lines and patient-derived xenograft models with YES1 gene amplifications presented a high sensitivity to dasatinib, an SFK inhibitor, pointing out YES1 status as a stratification biomarker for dasatinib response. Moreover, high YES1 protein expression was an independent predictor for poor prognosis in patients with lung cancer.Conclusions: YES1 is a promising therapeutic target in lung cancer. Our results provide support for the clinical evaluation of dasatinib treatment in a selected subset of patients using YES1 status as predictive biomarker for therapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Dasatinibe/farmacologia , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-yes/genética , Células A549 , Animais , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dasatinibe/uso terapêutico , Amplificação de Genes , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-yes/antagonistas & inibidores , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Expert Opin Ther Pat ; 29(6): 429-438, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31146605

RESUMO

INTRODUCTION: FGFR4 is a tyrosine kinase receptor which, under physiological conditions, is activated upon ligand binding in a highly regulated manner. This triggers downstream signaling related to proliferation and apoptosis resistance as well as other physiological processes. Many molecular alterations of the receptor and its ligands, specially FGF19, have been reported in several types of cancer, with special relevance in hepatocellular carcinoma. In addition, these have also been detected in other solid malignancies, including lung, breast, or colon cancer, among others. AREAS COVERED: This review covers patent literature on specific FGFR4 inhibitors and their applications, published from 2007 to June 2018. EXPERT OPINION: FGFR4 inhibition has gained relevance in oncology. A considerable number of patents disclosing different approaches to inhibit this receptor have been reported, displaying promising preclinical results for different cancer models. Currently, the safety and preliminary efficacy of several small molecule inhibitors targeting FGFR4 are under early phase clinical assessment, mainly in hepatocellular carcinoma patients. If positive results are derived from these trials, they will open the door for the application of FGFR4 small molecule inhibitors to a wide population of tumors of different types that harbor FGFR4-FGF19 signaling dysregulation.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias/patologia , Patentes como Assunto , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...